C?-Bound: A Capacity and Concurrency Driven
Analytical Model for Many-core Design

Yu-Hang Liu, Xian-He Sun
Department of Computer Science
[linois Institute of Technology
Chicago, IL 60616
{yuhang.liu, sun}@iit.edu

Abstract—In this paper, we propose C2-Bound, a data-driven
analytical model, that incorporates both memory capacity and
data access concurrency factors to optimize many-core design.
C?-Bound is characterized by combining the newly proposed
latency model, concurrent average memory access time (C-
AMAT), with the well-known memory-bounded speedup model
(Sun-Ni’s law) to facilitate computing tasks. Compared to tradi-
tional chip designs that lack the notion of memory concurrency
and memory capacity, C2-Bound model finds memory bound
factors significantly impact the optimal number of cores as
well as their optimal silicon area allocations, especially for
data-intensive applications with a none parallelizable sequential
portion. Therefore, our model is valuable to the design of new
generation many-core architectures that target big data process-
ing, where working sets are usually larger than conventional
scientific computing. These findings are evidenced by our detailed
simulations, which show with C?-Bound the design space can be
narrowed down significantly up to four orders of magnitude.
C?-Bound analytic results can be either used in reconfigurable
hardware environments or, by software designers, applied to
scheduling, partitioning, and allocating resources among diverse
applications.

Keywords-Memory wall; data stall time; memory bound; data
access concurrency; Sun-Ni’s Law; chip design; concurrent
average memory access time (C-AMAT)

I. INTRODUCTION

An on-chip multiprocessor (CMP) is an integrated circuit
that consists of two or more independent actual processing
units (called “cores”) to read and execute program instructions.
The design space exploration of on-chip multiprocessors is to
investigate potential configurations of integrated circuits with
diverse goals, including enhanced performance, reduced power
consumption, and more efficient simultaneous processing of
multiple tasks. Due to these merits, on-chip multiprocessors
have become the mainstream of microprocessors that underpin
the pivotal computing infrastructure [1]. In the meantime, the
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amount of cores is continuously increasing on processors. The
continual increase is caused by the need to exploit parallelism
for different applications whose behaviors require adaptive and
optimal on-chip area allocation of cores, caches, and memory
controllers. This improvement imposes additional challenge
to the already extremely huge design space of CMP that is
composed of intractable combinations of a large number of
architecture parameters for optimization [2].

A variety of analytical models have been presented re-
cently [3]-[8] to address these challenges. For example, Cas-
sidy and Andreou incorporate sequential data access delay in
terms of average memory access time (AMAT) into Amdahl’s
law [3] [4] [5], while Hill and Marty apply Amdahl’s con-
cepts to multi-core architectures based on a hardware cost
model [6]. Woo and Lee follow up with the consideration of
energy efficiency [7]. In contrast, Sun and Chen consider the
impact of memory capacity for many-core design, but they
do not explicitly incorporate data access concurrency in their
analysis [8]. Although these works, more or less, optimize
the design space of CMP in different forms, few of them
explore the memory concurrency. As a consequence, data
access patterns in these studies are exploited from sequential
perspective using the AMAT metric, which cannot truly reflect
current reality. In addition, most of these studies are also short
in the consideration of memory capacity impact on problem
sizes as well, which is another important factor in the design
space of CMP.

As data access delay is dominating the overhead in mod-
ern big-data processing, it has become the most preeminent
performance bottleneck of computing systems. For example,
the processor stall time due to data access typically contributes
50% to 70% of the total application execution time [9] [10]. As
such, incorporating data access patterns into performance mod-
els becomes vitally important. In fact, memory concurrency
as the main form of data access patterns has become a more
prevalent factor to the design of efficient memory systems (e.g.
multi-port, multi-banked, pipelined cache, non-blocking cache,
runahead, and simultaneous multithread). Meanwhile, in addi-
tion to data concurrency, in scalable computing problem size
increases with computing resources and the increase is usually
bounded by the available memory size [11] [12] [13]. Hence,
assuming the problem size is fixed would cause misleading
results. As a result, it is urgently needed to include memory



concurrency and memory capacity considerations in the many-
core design space exploration (DSE) to keep up with the
increasing importance of modern memory systems and with
the emerging of data intensive applications. To the best of our
knowledge, we propose for the first time to simultaneously
consider data access concurrency and memory capacity to
explore the design space of CMP.

Memory wall and memory bound are two well-known per-
formance constraints [11] [14]. C-AMAT is a new model that
unifies the combined impact of data locality and concurrency
on data access [15] [16]. Thus applying C-AMAT to many-
core design is a natural choice. In the meantime, Sun-Ni’s
law is a generalization of Amdahl’s law and Gustafson’s
law [11] [17] [18]. While these scalable laws are well studied,
they are traditionally discussed in the context of supercomput-
ing. Therefore, applying Sun-Ni’s law for many-core processor
design, while challenging, has practical significance. In this
paper we present C2-Bound, a data-driven analytical model
that incorporates both memory concurrency and memory ca-
pacity factors for many-core design. The essence of this model
is to take advantage of both the C-AMAT and Sun-Ni’s law
to optimize the design space of CMP. In particular, this study
makes the following contributions:

« (C2-Bound model is proposed to consider both memory
locality and concurrency at the same time. To this end,
we derive program-specific model parameters from traces
and consider adaptively reshaping (through allocating and
scheduling) the underlying architecture.

o C%-Bound model considers problem sizes that are
bounded by variable memory capacities. When the num-
ber of cores, N, is changed, the on-chip cache capacity
will be adjusted correspondingly, and then the problem
size will be scaled to a different value. We termed it as
the problem size scale function g(/N) and found g(NN)
is a vital factor in balancing the number of cores and
the size of the caches. When g(N) < O(N), few cores
but large caches are needed; when g(N) > O(N), more
cores and smaller caches are preferred. These results can
significantly narrow the large design space and they can
only be got from analytical model rather than from an
architect’s intuition.

o Finally, C2-Bound model presents an interface between
analysis and simulation. With the APS (Analysis plus
Simulation) algorithm, the newly proposed DSE model
has been integrated into the GEMS simulator [19] to
supervise simulation. The APS approach drastically re-
duces the number of required simulations. Representative
results for diverse applications confirm the feasibility and
correctness of the newly proposed analytical model for
many-core processor design. C?-Bound model has been
implemented as an automatic tool to find an application-
specific optimal architecture.

The remainder of this paper is organized as follows. The
next section provides some preliminary knowledge of C-
AMAT and Sun-Ni’s law. Section III then proposes the data-

driven C2-Bound analytical model for many-core design. Sec-
tion IV presents application specific design exploration case
studies. Section V further discusses memory concurrency and
memory capacity-bounded problem size. Section VI reviews
related work in many-core design exploration. Finally, Section
V concludes this study and discusses potential future work.

II. MEMORY BOUNDS IN TERMS OF LATENCY AND
CAPACITY

Latency and capacity are two bounds of memory on the
achievable computing performance. C-AMAT, a new perfor-
mance metric, accounts for concurrency at both the component
and system levels for modern memory design [15] [16] [20].
C-AMAT represents measures and analyzes data access delay
from a single program perspective. In contrast, Sun-Ni’s law
highlights the impact of memory bounded problem sizes on
parallel speedup [11]. Both Amdahl’s law [17] and Gustafson’s
law [18] are the special cases of Sun-Ni’s law. In this paper,
unless otherwise stated, the term memory system indicates the
whole memory hierarchy rather than only the main memory.

A. C-AMAT

The conventional memory metric AMAT formulation is
shown in Eq. (1) [21], where H is the hit time of data accesses,
MR is the miss rate, and AMP is the average miss penalty.
AMP is the sum of all miss access latencies divided by the total
number of misses. AMAT does not consider the concurrency
of data accesses in terms of either hits or misses, based on
the assumption that data accesses are sequential, one after
another; further, AMAT does not take into account that with
concurrent accesses, hits and misses may coexist in the same
cycle. The sequential assumption governing AMAT worked
well in the past, but applies less accurately for modern pro-
cessor architectures and memory systems where concurrency
is paramount. For example, in an out-of-order processor, when
a miss occurs, other instructions can be executed while the
memory system is servicing the miss. Moreover, concurrency
features such as multi-port, multi-bank and multi-rank allow
multiple outstanding reads and writes to co-exist at a given
time in the memory system, depending on the underlying
hardware support. Therefore, some of the data access latencies
can be hidden.

AMAT = H + MR x AMP (1)

To cover the concurrent read and write properties of modern
memory systems, the C-AMAT model is proposed in Eq. (2)
[15]. The first parameter H is the same as that in AMAT.
The second parameter Cp represents hit concurrency; the
third parameter C's represents the pure miss concurrency. Cr
can be contributed by caches with multi-port, multi-bank or
pipelined structures. C'y; can be contributed by non-blocking
cache structures. In addition, out-of-order execution, multi-
issue pipeline, multi-threading and chip multiprocessor (CMP)
can all increase C'y and C);. The pure miss rate, pMR, is
different from the conventional miss rate (MR). pMR is the
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ratio of the number of pure (rather than conventional) misses
over the total number of accesses. A pure miss here means
that a miss contains at least one miss cycle which does not
have any hit access activity [15]. pAMP is the average number
of pure miss cycles per miss access.

H AM P
C-AMAT = = y pMR x 2 )
Cy Cy
As shown in Eq. (3), the ratio of AMAT and C-AMAT is
the data access concurrency, which will be abbreviated to C.

AMAT
C = GAMAT ©)

Generally, C' is greater than or equal to one. When C' = 1,
we can say there exists no concurrency. At this time, C'y = 1,
Cy =1, pMR = MR, and pAMP = AMP. Therefore, AMAT
can be seen as a special case of C-AMAT. In our later
discussion, we will use Eq. (3) to denote the data access
concurrency.

Fig. 1 demonstrates C-AMAT concept. There are five dif-
ferent memory accesses and each access contains 3 cycles for
cache hit operations. If it is a miss, additional miss penalty
cycles will be required. The number of miss penalty cycles is
uncertain, depending on where the missed data can be obtained
and contention impact during the data access. Access 1, 2 and
5 are hit accesses; Access 3 and 4 are miss accesses. Access
3 has a 3-cycle miss penalty; Access 4 has only a l-cycle
miss penalty. When considering the access concurrency, only
Access 3 contains 2 pure miss cycles. Though Access 4 has
1 miss cycle, this cycle is not a pure miss cycle because it
overlaps with the hit cycles of Access 5. Therefore according
to our new definition of concurrent (pure) miss rate, the (pure)
miss rate of the five accesses is 0.2, instead of 0.4 as that of
the conventional non-concurrent version. When miss cycles
are overlapping with hit accesses, the processor will not stall;
the processor can continue processing the data provided by
the hit accesses. According to Eq. (2), C-AMAT is 8 cycles
out of 5 accesses or 1.6 cycles per access; whereas by Eq. (1)
AMAT is 3+ 0.4 x 2 or 3.8 cycles per access. The difference
between C-AMAT and AMAT is the contribution of concurrent

data access. In this example, concurrency has doubled memory
performance.

In Fig. 1, there are 4 hit phases, namely Hit phase 1, 2,
3, 4, which contain 2, 4, 3, 1 concurrent hit cache assesses
with lasting cycle 2, 1, 2, 1, respectively. Therefore, Cy =
2x2/64+4x1/64+3x%x2/6+1x1/6=>5/2. And there is
only one pure miss phase with 1 pure miss concurrency which
lasts for 2 cycles. Therefore Cpy = 1 x2/2 = 1; pAMP = 2/1
=2; pMR = 1/5. Thus formula (2) is equal to

pAMP 3

Cum 5/2

H
C-AMAT = “~ 1 pMR -
+pMA X 5/2

Cu

1 2
12 16
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The value of the parameters is in performance analysis and
optimization. The invaluable contribution of C-AMAT is that it
provides a unified formulation to capture the joint performance
impact of locality and concurrency.

B. Sun-Ni’s Law

Realizing that the problem size may be constrained by
memory capacity, Sun-Ni’s law was proposed [11]. Assume
each computing node is a processor-memory pair. Increasing
the number of processors, N, then, will increase the memory
capacity as well. Assume y = h(x) is the relationship between
problem size and memory capacity size. That is,

W = h(M) and W’ = h(N x M)

Where M is the memory capacity of one node, W is the
original problem size, and W' is the scaled problem size.

Let y = g(N) be the function that reflects the parallel
problem increase factor as the memory capacity increases [N
times (in next subsection, we will present detailed examples
to illustrate g(/N)). By definition,

g(N)=Ww'"/w
Then we have
g(N) = h(N x M)/h(M) = h(N x k™ (W))/h(M)

Thus memory capacity-bounded speedup is

fseq X W + (1 - fseq) X h(N x hil(W))
fseq X W + (1—fse(1)><h1(VN><h,1(W))

Speedupsun-Ni =

fseq is the sequential portion of the problem size. Note
that for any power function h(z) = az® and for any rational
numbers a and b [11], we have

h(N x ) = a(N x )’ = N® x az® = N® x h(z) = g(N) x h(zx)

Therefore,



Jsea X W + (1 = fseq) X g(N) x W
fseq x W + (l_fseq):rg(N)XW

Speedupsun-Ni =
That is, Eq. (4) holds.

Foeq + (1= freq) X g(N
Speedupsyn-ni = ot (1—qu))xg(N() ! @
fseq + +

Where g(1) = 1. Taking g(N) = N3/2 as an example, the
speedup is

Jseq + (1 = foeq) X N3/2
S d un-Ni — =
peedupsun-N Foea F (1= foug) X N172

O(N)

When ¢g(N) = 1, Eq. (4) is the Amdahl’s law. When
g(N) = N, Eq. (4) is the Gustafson’s law. Because Amdahl’s
law [17] as well as Gustafson’s law [18] both can be seen as
the special cases of Sun-Ni’s law [11], we will use Sun-Ni’s
law in Eq. (4) as the base for our further discussion.

For a better understanding, we use some examples to
illustrate the role of g(IN). Dense matrix multiplication is a
well-known routine frequently found in applications. For dense
matrices with dimension n, the computation requirement of
matrix multiplication is 2n® and the memory requirement is
3n2. Thus,

W = 2n® and M = 3n?

Writing W as a function of M, we have

. 2M 3/2
W= (5
This means that
2M
W =h(M) = (7)3/2

Therefore,

)3/2 — N3/2 ~ h(M)

W’:h(NxM):(%

That is,

g(N) = h(N x M)/h(M) = N*/?

In a similar manner, given the computation complexity
and memory complexity, we can get the g(N) value for
any application. g(N) represents the data reuse rate when
memory is scaled N times. Table I shows the values of
some applications. As will be shown later, g(N) significantly
impacts the optimal CMP configuration for different phases

of an application and diverse applications. The merit of this
work is that it presents an Analytical plus Simulation method
to automatically obtain the quantitative solution before detailed
simulation.

TABLE I
THE g(IN') FACTORS OF SOME APPLICATIONS

Application Computation ~ Memory g(N)
TMM(Tiled matrix multiplication) N3 N? N3/2
Band sparse matrix multiplication N N N

Stencil N N N
FFT(Fast Fourier Transform) N Nloga N 2N

III. THE C?-BOoUND CMP DSE MODEL

We formalize the many-core design space exploration as
an optimization problem. Note that object function and con-
straints are needed for an optimization problem. In this section,
we firstly present the execution time object function and con-
straints for optimization. Then, we propose the methodology
for automatic collection of the needed parameter values and
then resolve the optimization problem. Lastly, we will discuss
how the analytical results can facilitate simulation.

Given a fixed problem size, the impact of memory level
concurrency and process level concurrency can be illustrated
in Fig. 2, where the x-axis is time, and the y-axis is the amount
of work being done in parallel. Subgraph (a) shows the case
when there is only one process (p=1) and no memory concur-
rency (C=1). (b) shows the case when multiple processes are
available (p=N) but still without memory concurrency (C=1).
(c) shows the highest concurrent case when multiple processes
are available (p=N) with memory concurrency (C>1). The
shadowed area is the total amount of operations done. The
sum of the length of all the shadowed rectangles is the time
it would take to run.

Quantifying the combined effect of the memory level con-
currency and process level concurrency, as demonstrated in
Fig. 2, is difficult due to the entangled interaction between
data access patterns and the underlying computing system.
What makes the problem become even more challenging is
that, the problem size is usually a function of the available
memory capacity.

In this study, the bound impact of memory concurrency and
memory capacity on achievable many-core performance are
examined. The proposed model is called C2-Bound, where
C? denotes the consideration of both data access Concurrency
and “memory” Capacity. Note that the memory capacity here
is on-chip memory capacity (more discussion will be presented
in Section V).

A. Execution Time Object Function

Let problem size (in terms of the dynamic Instruction
Count) be IC. Eq. (5) is the classic formulation of CPU-time
of sequential processing in terms of data stall time [21].

CPU-time
= IC X (CPlege + data-stall-time) x Cycle-time 5)
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concurrency on program running time

concurrency and memory level

Eq. (6) is the conventional data stall time formula based on
AMAT [21].

Data-stall-time = fmem X AMAT 6)

The AMAT based Eq. (6) only considers memory locality,
but not concurrency. Eq. (6) no longer holds when data access
concurrency exists.

Recently, we have extended Eq. (6) to consider both locality
and concurrency [20]. The extended C-AMAT based execution
time is Eq. (7). A rigorous proof has been made in [20] with
regard to the correctness and generality of Eq. (7) for a single
processor. However, two questions remain for our C2-Bound
model: 1) extension to multiprocesors, 2) the consideration of
memory capacity.

T=1I1C x (CP[e:ce +fmem
xC-AM AT x (1 — overlapRatioc..m)) x Cycle-time (7)

We take Eq. (7) as the start point to study the scalability
issues. According to Sun-Ni’s law, the execution time object
function can be formed as Eq. (8).

(N) XTN

Jp =T + 2 - ®)

Where T7 is the execution time of the serial part of the
workload IC;. Ty is the sequential execution time of parallel
part of the workload IC5. The portion of IC; to IC is feeq
and the portion of IC to IC is 1 — feq. That is,

IC) = IC X foeg and ICy = IC' x (1 — fucq)

As the parallel degree ¢ can be from 1 to N, Eq. (8) can be
generalized as follows. For the brevity of discussion, we use
the simple version as Eq. (8), but in real CMP DSE we have
implemented the generalized version.

N

Jp = Z (9(i) x T; /1)

i=1

According to Sun-Ni’s Law, the problem size IC can be
scalable with memory capacity, and recall that the memory
capacity is increasing linearly with N, so the following
relation holds, where ICj is the problem size when N = 1.

IC = g(N) x IC )

Therefore, combining Eq. (7), (8) and (9), we can derive
Eq. (10) as the object function for application execution time.

Jp = ICy % (CPl.ye + frmem x C-AMAT

(V) x (1 = fseq)

X (1 — overlapRatioc.m))(fseq + g N ) (10)

Eq. (10) will be used as the object function for optimization.
In Eq. (10), the features of data access patterns have been de-
noted by C-AMAT, especially data access concurrency within
a single core. Now we move onto developing the constraints
for the optimization problem.

B. Physical Constraints

Fig. 3 shows a schematic illustration of CMP architecture.
There are three basic components: the NoC-connected cores,
the fixed function logic (timing, test, and debug), memory
controllers and I/O interfaces. The cores each access their own
subset of a coherent or non-coherent L2 cache to provide high-
bandwidth L2 cache access.

Pollack’s rule states that microprocessor performance in-
crease due to microarchitecture advances is roughly propor-
tional to the square root of the increase in complexity [1].

CPloge xx Ag~Y/?

We use the rule to model the computing performance of a
processor core as Eq. (11).

CPlepe = koAo /% + o (11)
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Assume the chip has A area in total. For the brevity of
discussion, we also assume the processor core is symmetric.
As shown in Eq. (12), all the cores have equal private areas.
The case for asymmetric and dynamic multicore processors
can be derived similarly.

A= N(Ao+ A1 + As) + A, (12)

Where N is the number of cores in CMP, A is the area
of a processors core (excluding its private cache), and A; is
the area of the private cache of a processor. A, is the area
of the L2 cache allocated for a given processor. A, is the
area allocated for the shared functions including shared caches,
interconnections, memory controllers, test and debug, etc. The
object function and constraints considering both C-AMAT and
Sun-Ni’s Law have been discussed, now we are ready to solve
the optimization problem.

C. Optimization Problem and Solving

Given that the total silicon area of the chip is fixed, the
allocation of the silicon for core logic, L1 cache, and L2 cache,
will influence application performance. The law of diminishing
marginal utility should be considered into the allocation. Based
on the object function and physical constraints, we formalize
the CMP DSE optimization problem as follows.

Min Eq. (10)
Sat. Eq. (12)

We solve the optimization problem using the method of

Lagrange multipliers, minimizing:

L(A1, A2, \,N) = Jp + A[N(Ao + A1 + A2) + A. — A] (13)

Differentiating Eq. (13) with respect to Ag, A1, As, A\, N,
we can build a set of nonlinear equations. When we use tools
analyzing Eq. (13), we find that

oL
. . S
IN > 0 if and only if g(IN) > O(N)

Load-Store Unit

C-AMAT detector
Hit
Concurrency
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Cache Controller

Miss
Concurrency
Detector

MSHR

Fig. 4. C-AMAT detector

Therefore the optimization falls into two cases. When
g(N) > O(N), there exists no N value to obtain the optimal
execution time. In this case, we find the optimal Ay, A1, As,
N that maximize W/T which is the ratio of problem size and
execution time. On the other hand, when g(N) < O(N), we
can find the optimal core number N to minimize execution
time 7T, and its corresponding Ay, A, and A,. Eq. (13)
provides a good theoretical analytic result for CMP design.
But, in engineering design we often need a more accurate
design layout based on simulation. In the following, we discuss
how the C?-Bound model can guide CMP simulation.

D. APS Methodology

We propose the automatic APS (Analysis plus Simulation)
method for C2-Bound based CMP DSE. The APS method
follows a “characterization + optimization + simulation” flow.
The characterization collects the input parameters for the opti-
mization. The input information can be obtained directly from
an application development manual, analyzed by a compiler,
or profiled by hardware detection structures.

Fig. 4 illustrates the C-AMAT analyzer which is a hardware
detection system. The Hit Concurrency Detector (HCD) counts
the total hit cycles and records each hit phase in order to
calculate the average hit concurrency. The HCD also notifies
the Miss Concurrency Detector (MCD) whether a current cycle
has a hit access. Therefore, with the hit information from HCD
and the miss information from miss status holding registers
(MSHR), MCD is able to obtain the total number of pure
miss cycles.

We have successfully collected all the needed input pa-
rameters for an application running on physical machines
using PAPI [22] and HPCToolkit [23]. Moreover, we also
achieved the same goal with the help of GEMS5 [19] and
DRAMSim?2 [24].

Taking the parameters as inputs, Fig. 5 shows the opti-
mization flow. The left column lists the four steps: the input,
formalization, solving and the output, while the right column
presents the implementation details. Note that the solution of
the nonlinear equations can be found using Newton’s method.
We have implemented an efficient solver for the nonlinear
equation set.
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Fig. 6. Analysis plus simulation (APS) algorithm

The solver can be integrated with a simulator to guide
detailed evaluation. Only the adjacent regions in the design
space near the solution presented by the C?-Bound model are
worth the time-consuming simulation. We formally present the
Analysis Plus Simulation (APS) algorithm in Fig. 6.

APS is the collaboration of analytical modeling and de-
tailed simulation. The optimal core count, the space allocation
between processing and caches, are determined by the opti-
mization model. Once these fundamental parameters are fixed,
the skeleton of CMP becomes clear. Based on the skeleton,
microarchitecture parameters such as issue width and ROB
size can be efficiently evaluated via simulation since the design
space has been narrowed significantly.

In next section, the detailed results of the verification and
case studies are presented.

IV. VALIDATION AND CASE STUDY

The state-of-the-art cycle-accurate simulator GEMS [19]
and DRAMSim?2 [24] are integrated to provide an appropriate
memory performance simulation. We model a detailed 4-way

Application 1 running zone  Application 2 running zone
- Core
L1l LiD
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Fixed \\
Wnction q q .| L2 cache
logic \
(Timing,
test,
debug)
Memory
controller &
1/0 interface
Application 3 running zone
Fig. 7. Core allocation for multiple tasks in a CMP

out-of-order processor with a 128-entry reorder buffer, a two-
level cache hierarchy. The memory hierarchy is similar to
an Intel Core i7 system [25]. We also implemented on-line
detecting structure for the C-AMAT analyzer shown in Fig. 4.

We used benchmark suites, SPLASH-2 and PARSEC, which
have several input datasets at different scales [12] [13]. Aided
by SimPoint [26], 10 billion dynamic instructions for each
benchmark were simulated to collect statistics.

Recent product announcements show a trend toward aggres-
sive integration of many cores on a single chip to maximize
throughput. However, efficiently utilizing many resources is
not easy. The behavior of an application changes phase by
phase during its execution. There is no fixed hardware con-
figuration that can work best for all the possible behaviors.
Each design has its own pros and cons, depending on the
interaction between data access patterns and the underlying
memory system.

Fortunately, programs have periodic behaviors and their data
access patterns are predictable [26]. With a set of lightweight
counters, we are able to deploy proper optimization techniques
to timely adapt to the underlying data access pattern changes
of an application.

C?-Bound analytic results can be either used in recon-
figurable hardware environments or, by software designers,
applied to scheduling, partitioning, and allocating resources
among diverse applications. Fig. 7 includes three applications.
As the sequential portion f,., is very large and memory
concurrency C' is very low, the first application needs the least
number of cores and thus the benefit for allocating more cores
to the first application is marginal. On the other hand, the
second application has a low f..q and a high C'. Therefore, it
is sensible to assign more cores to the second application. The
third application falls somewhere between these two extremes.
In this manner, the application demand can be well matched
into the underlying hardware.

In the following section, we will discuss the optimal core
numbers when workload is super linearly scalable, that is
g(N) = N3/2 which is reprsentative for a large number
of applications. We will discuss three levels of memory
concurrency: one has no memory concurrency, i.e. C = 1;
one has a moderate memory concurrency, C' = 4; the last is
high memory concurrency C' = 8.
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Fig. 8. The problem size W and execution time 7" of memory bounded
scaling (g(N) = N3/2, frmem=0.3)

The purpose in this section is not to present all the results of
the model, but only to verify its correctness and effectiveness.
We have implemented the model online to account for changes
in applications’ data access patterns.

Fig. 8 and 9 show the problem size W and the execution
time 7" of memory bounded scaling when g(N) = N3/2 and
data access frequency fiem is 0.3 or 0.9. Comparing Fig. 8
and 9, we find that the execution time (7') increases with data
access frequency fiem, Fig. 10 and 11 show the throughput
(W/T) values correspondingly. Comparing Fig. 10 and 11,
we find that the throughput (W/T') decreases with data access
frequency frem-

When there is no memory concurrency (C=1), the scalability
curve of the execution time 7' is close to the problem size
curve. On the other hand, higher memory concurrency leads
to a better scalability, in terms of execution time. For example,
as shown in Fig. 8 and 9, when N is 1000, the speedup ratio
of T(C = 8) over T(C' = 1) is very significant. This tells
us, even with a fixed number of processing cores, improving
data access performance via memory concurrency can obtain
significantly speedup. This fact is very important for the design
of future supercomputer.

Fig. 10 and 11 show that when g(N) > O(N), higher
memory concurrency makes many-core computing more ef-
ficient, in terms of increasing throughput W/T. When there
is no memory concurrency (C=1), about one hundred cores
are enough to achieve the best throughput. When N is more
than 100, the ratio of W and T remains approximately the
same. However, when memory concurrency increases, W/T
increases and fluctuates, so we can find an optimal point to
achieve the best throughput to foster the utilization of many-
COre processors.

The results presented in Fig. 8 to 11 demonstrate the
importance of memory concurrency and its relation with the
number of cores. In general, more cores correspond to smaller
cache area; the results for area allocation for cache are not
presented here due to the page limitation, but can be obtained
at the same time with the optimization of the number of cores.

Therefore, the optimal core count N, the space allocation
between processing and caches, A;, As, have been deter-
mined by our optimization model, Eq. (13). Since these are
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Fig. 9. The problem size W and execution time 7" of memory bounded
scaling (g(N) = N3/2, frem=0.9)
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the most fundamental parameters of CMP, the skeleton of
CMP becomes clear. Based on the skeleton, microarchitecture
parameters such as issue width and reorder buffer (ROB) size
can be efficiently evaluated via detailed simulation since the
design space has been narrowed significantly.

Using the cycle-accurate simulator GEMS5 [19], we have
done a DSE to find the optimal chip configurations for the
fluidanimate benchmark from PARSEC [13]. The fluidanimate
is a computer animation application with large working sets.
Six parameters (Ag, A1, Aa, N, issue width, ROB size) are
considered and each parameter has ten optional values, so
the whole design space size is one million (10°). As shown
in Fig. 12, with the help of the C2-Bound analysis, we do
not need to run simulations to explore the Ag, A;, Az, N
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parameters. For the rest parameters, issue width and ROB size,
only one hundred (10?) simulations are needed. Therefore, the
design space has been narrowed significantly by up to four
orders of magnitude, from one million to one hundred. To
evaluate the accuracy of the APS method, we run simulations
to traverse the full design space, which use 128 Intel Xeon
processors running for 4 weeks. Then we get performance data
for each of the 108 different configurations, with which the
APS performance data are compared, and the error is 5.96%.
The error may come from Pollacks rule in Eq. (11) which
is an empirical equation rather a law. Note APS only used
about one hour with 8 processors rather than 4 weeks with
128 processors. Compared to the time saving, the 5.96% error
is acceptable.

We also use the well-known machine learning method
ANN [2] to predict the performance data in the huge design
space. To achieve the same prediction accuracy (5.96% error),
ANN needs 613 times of simulation. Therefore, APS used only
16.3% of the simulation time to achieve the same prediction
accuracy as ANN.

V. DISCUSSION

For a many-core processor, a fundamental question is which
layer of a memory hierarchy is the primary performance bound
vital for many-core performance. To answer this question, we
should consider three factors, latency, bandwidth and capacity
simultaneously.

Initially, the interactions among the three factors are not
straightforward. Fortunately, the APC metric can be used to
represent the combined impact of latency and bandwidth [27].
More interestingly, the previously used metric C-AMAT =
1/APC [15].

APC (data Access Per memory-active Cycle) is a new
metric to measure memory systems performance, which can
be applied on each memory layer and considers both memory
locality and concurrency [27]. In Fig. 13, the APC, is the
APC value of the L1 cache, APC5 is that of LLC (last level
cache), and APCj is that of main memory. As the big gap
between the performance of on and off-chip cache has been
shown in Fig. 13, it is reasonable to conclude that in our
C?-Bound model the memory bound is the on chip memory
bound. The “on-chip memory” is LLC for inclusive caches,
or the sum of all the on-chip caches for exclusive caches.

~-APC,

; NN

APC, —<APC;

Fig. 13. The APC values at each layer of a memory hierarchy

Assuming the on-chip memory size is X, the working set
size [28] is Y, and the problem size is Z, we can obtain the
maximum value of the LLC bounded problem size via solving
the algorithm shown as follows.

Max Z

Sat. Y < X

The rationale behind the algorithm is to fit the working
set into on-chip memory, we should keep the working set
size no more than the on-chip cache size; otherwise the chip
performance will be decreased significantly [28] [29]. Assume
the on-chip memory bounded problem size is a and the real
problem size is b. There exist two cases:

1) If b is no more than a, the application performance will
be processor-bound. The working set of the application is
captured on chip, and thus the application requires few off-
chip accesses, and then the application performance is largely
insensitive to on-chip memory capacity and concurrency.

2) If b is more than a, the application performance will be
limited strictly by the rate that data can be moved between
the processor and the DRAM. Now, cache capacity and data
access concurrency will impact the application performance
more significantly. A big data application is deemed a large
working set application, and is likely falling into this case.

Applications may move between these two cases phase
by phase, since their data access behavior may be dynamic.
Therefore, reconfigurable hardware or management software
(for scheduling, partitioning and allocating) is called for to
achieve the dynamic matching between application and un-
derlying hardware. Fortunately, an associated methodology in
Fig. 4 has been given to obtain the needed parameters online to
facilitate the C'2-Bound model being used for these purposes.

Our model considers two new parameters: data access
concurrency and memory capacity-bounded problem size. The
introduction of data access concurrency is based on the fact
that concurrent data access exists at each layer of a memory
hierarchy, and its impact should be considered in many-core
design. The parameter memory capacity-bounded problem size
is a vital factor in the scalability study, where increasing the
number of cores is a common choice of many-core design.
The inclusion of these two new parameters makes the newly



proposed C2?-Bound model significantly more appropriate for
DSE than the existing locality-only and/or problem size fixed
models for modern application-specific many-core design.

VI. RELATED WORK

The many-core design exploration is a process to find an
architecture with features that can well match application
characteristic, and then to utilize chip space efficiently and
to achieve excellent performance. Simulation and analytical
modeling are the two basic approaches to accomplish this
purpose. However, the simulation is costly and slow, typically
a one minute execution of a real machine requires approx-
imately one month to a year to simulate [30], an order of
10° to 106 increase in execution time. The huge design space
and the high simulation cost prevent computer architects from
exploring the intractable design space thoroughly. The conven-
tional brute force simulate-compare design process becomes
painfully slow, if not infeasible, to find an optimal multi-core
architecture.

While simulation is an important step toward implemen-
tation, analytical methods can rapidly narrow the system
design space prior to the detailed simulation. They illuminate
high-level design trade-offs and present solutions for optimal
performance and efficiency.

As an analytical approach, the C>-Bound analytical model
introduced in this study is effective and new. Based on the
C2-Bound model, the newly proposed APS tool adopts an
integrated analysis and simulation approach to utilize the
merits of both methods. It has reduced the total simulation
time significantly, in an order of four folds.

Researchers have investigated analytical methods for opti-
mizing CMP architectures. Some methods used in the machine
leaning domain have been used for analytical modeling such as
genetic algorithms (GA) [31] and response surface modeling
(RSM) [32]. The GA and RSM are both closed-form expres-
sions. As a result, the impacts of problem size and memory
concurrency cannot be explicitly discussed.

Some open-form expressions were proposed without con-
sidering the variations of problem size and memory concur-
rency. Notably, work by Hill and Marty uses a measure of
processor performance to augment Amdahl’s law, and applies
it to evaluate symmetric, asymmetric and dynamic multi-core
processors [6]. In the work, the problem size is assumed to be
fixed and the impact of memory concurrency is ignored.

Sun and Ni proposed the memory-bounded parallel speedup
model, which is also known as Sun-Ni’s law [11]. The law
revealed that the scalability of computing is bounded by
problem size which is limited by memory capacity. The law
which is valid for supercomputing also presents insights for
CMP design. However, it needs to be revisited by taking into
the account of data access delay besides the problem size, and
to consider the CMP features, especially the physical resource
constraints [33].

With the consideration of memory-bounded problem size,
Sun and Chen discussed the Sun-Ni’s law based on the same
CMP cost model presented by Hill and Marty and obtained

very different and more optimistic results [8]. Their results
are important in locality based system design. Data access
concurrency, however, was not explicitly incorporated.

Cassidy and Andreou incorporated sequential data access
delay in terms of AMAT into Amdahl’s law [3] [4] [5].
This work take data access patterns account into an analyt-
ical model. However, Cassidy and Andreou did not consider
concurrent data accesses, and also they assumed fixed problem
size. Their work can be taken as special cases of the newly
proposed C2?-Bound model when there exists no memory
concurrency or the problem size is fixed.

Our work is fundamentally different with the above inves-
tigations. We do not keep the assumptions that problem size
is fixed and the memory access is sequential. For the first
time, Amdahl’s law is reevaluated with the simultaneously
consideration of memory concurrency and memory capacity
for the silicon area constrained many-core processor design.

VII. CONCLUSIONS

While the number of transistors in a given die increases
based on Moore’s law, utilizing these transistors continues
to be a challenging task in VLSI design. This is especially
true in recent years when data access becomes the premier
performance bottleneck of computing systems. To respond to
the increasing importance and complexity of modern many-
core architecture and memory systems, in this study, for
the first time, memory concurrency and memory-bounded
problem size are incorporated into many-core processor design
space exploration. While maintaining simplicity and practical
feasibility, with the consideration of both memory-concurrency
and memory-bound, the newly proposed C2-Bound model is
significantly more accurate and more powerful than existing
DSE models. It facilitates the studies of many-core data
processing, workload scalability, and therefore reshapes the
on-chip area allocation for processing cores, caches and mem-
ory controllers. The C2-Bound model has been implemented
and can be executed automatically under the newly proposed
analysis plus simulation (APS) algorithm for fast and accurate
CMP DSE, with a combination of analysis and simulation.
Analytic and implementation results show C?-Bound is fea-
sible and effective. The analytical results have narrowed the
design space significantly by up to four orders of magnitude.
APS uses only 16.3% of the simulation time to achieve the
same prediction result as the widely-used standard machine
learning method, ANN [2], for the fluidanimate benchmark.

The extension of CMP DSE to consider the concurrency
driven data access latency and memory capacity bounded
problem size is a complicated process. In this study, we
have used our cumulated long time experience in memory
bounded formulation and in C-AMAT development. While
the C2-Bound model is essential for next generation data-
centric processor design and for Exascale system design, it
is only the first step in considering data and scalability in
CMP DSE. Moreover, energy consumption and temperature
can be considered for multi-objective exploration in future



refined versions. The extension of C2-Bound to asymmetric
CMP DSE is straightforward.

The analytic results presented in this study also can be
used in hardware reconfiguration environments or used by
software designers for scheduling, partitioning and allocating
resource to achieve the dynamic matching between application
behaviors and underlying hardware.

In this paper, we only focus on data access concurrency
and memory bounded problem size for high performance
computing. In the future, more objects can be included in such
an analysis. For example, the object function in Eq. (10) can
be reshaped to achieve a balance among performance, power,
energy and temperature [34] [35].

ACKNOWLEGMENT

This work is supported in part by the National Science
Foundation, under grant CCF-1536079, grant CCF-0937877
and grant CNS-0751200.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in Proceed-
ings of the 44th annual Design Automation Conference. ACM, 2007,
pp. 746-749.

[2] E. Tpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,

“Efficiently exploring architectural design spaces via predictive mod-

eling,” in Proceedings of the 12th international conference on Archi-

tectural Support for Programming Languages and Operating Systems.

ACM, 2006.

A. Cassidy and A. G. Andreou, “Analytical methods for the design

and optimization of chip-multiprocessor architectures,” in Information

Sciences and Systems, 2009. CISS 2009. 43rd Annual Conference on.

IEEE, 2009, pp. 482-487.

A. Cassidy, K. Yu, H. Zhou, and A. G. Andreou, “A high-level analytical

model for application specific cmp design exploration,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2011.

IEEE, 2011, pp. 1-6.

[51 A.S. Cassidy and A. G. Andreou, “Beyond amdahl’s law: an objective
function that links multiprocessor performance gains to delay and
energy,” IEEE Transactions on Computers, vol. 61, no. 8, pp. 1110-
1126, 2012.

[6] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, no. 7, pp. 33-38, 2008.

[7] D. H. Woo and H.-H. S. Lee, “Extending amdahl’s law for energy-
efficient computing in the many-core era,” Computer, no. 12, pp. 24-31,
2008.

[8] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multicore
era,” Journal of Parallel and Distributed Computing, vol. 70, no. 2, pp.
183-188, 2010.

[9] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and

B. Falsafi, “Database Servers on Chip Multiprocessors: Limitations and

Opportunities,” in Proceedings of the Biennial Conference on Innovative

Data Systems Research, no. 8, 2007.

S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-

temporal Memory Streaming,” in ACM SIGARCH Computer Architec-

ture News, vol. 37, no. 3.  ACM, 2009, pp. 69-80.

X.-H. Sun and L. M. Ni, “Another view on parallel speedup,” in

Proceedings of Supercomputing’90. 1EEE, 1990, pp. 324-333.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2

programs: Characterization and methodological considerations,” in ACM

SIGARCH Computer Architecture News, vol. 23, no. 2.  ACM, 1995,

pp. 24-36.

[3

—

[4

=

[10]

(11]
[12]

[13]

(14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]
[29]

[30]

[31]

[32]

(33]

[34]

[35]

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72-81.

W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,

no. 1, pp. 20-24, 1995.
X.-H. Sun and D. Wang, “Concurrent average memory access time,”

IEEE Computer, vol. 47, no. 5, pp. 74-80, 2014.

X.-H. Sun, “Concurrent-AMAT: A Mathematical Model for Big Data
access,” HPC Magazine, 2014.

G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483-485.

J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the
ACM, vol. 31, no. 5, pp. 532-533, 1988.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1-7, 2011.

Y.-H. Liu and X.-H. Sun, “Reevaluating data stall time with the
consideration of data access concurrency,” Journal of Computer Science
and Technology, vol. 30, no. 2, pp. 227-245, 2015.

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2012.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189-204, 2000.

L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685-701, 2010.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16-19, 2011.

D. Levinthal, “Performance analysis guide for intel core i7 processor and
intel xeon 5500 processors,” Intel Performance Analysis Guide, 2009.
G. Hamerly, E. Perelman, and B. Calder, “How to use simpoint to pick
simulation points,” ACM SIGMETRICS Performance Evaluation Review,
vol. 31, no. 4, pp. 25-30, 2004.

D. Wang and X. Sun, “Apc: A novel memory metric and measurement
methodology for modern memory system,” IEEE Transactions on Com-
puters, vol. 63, no. 7, pp. 1626-1639, 2014.

P. J. Denning, “The working set model for program behavior,” Commu-
nications of the ACM, vol. 11, no. 5, pp. 323-333, 1968.

——, “The locality principle,” Communications of the ACM, vol. 48,
no. 7, pp. 19-24, 2005.

L. Eeckhout, “Computer architecture performance evaluation methods,”
Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp. 1-145,
2010.

M. Thompson and A. D. Pimentel, “Exploiting domain knowledge
in system-level mpsoc design space exploration,” Journal of Systems
Architecture, vol. 59, no. 7, pp. 351-360, 2013.

G. Palermo, C. Silvano, and V. Zaccaria, “Respir: a response surface-
based pareto iterative refinement for application-specific design space
exploration,” Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, vol. 28, no. 12, pp. 1816-1829, 2009.

Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “Cmp design space
exploration subject to physical constraints,” in The Twelfth International
Symposium on High-Performance Computer Architecture, 2006. 1EEE,
2006, pp. 17-28.

S. Cho and R. G. Melhem, “Corollaries to amdahl’s law for energy,”
Computer Architecture Letters, vol. 7, no. 1, pp. 25-28, 2008.

W. Huang, K. Skadron, S. Gurumurthi, R. J. Ribando, and M. R. Stan,
“Exploring the thermal impact on manycore processor performance,”
in Semiconductor Thermal Measurement and Management Symposium,
2010. SEMI-THERM 2010. 26th Annual IEEE. 1EEE, 2010, pp. 191—
197.



